Magnetic Fluid Hyperthermia for Cancer Therapy
نویسندگان
چکیده
The aim of the paper is to show basic ideas of magnetic fluid hyperthermia treatment with regard to power losses which occur during heating with alternating magnetic field. A special attention has been paid to dielectric, hysteresis and relaxation mechanism losses and their contribution to total power losses. A numerical analysis has been done with regard to a simplified female breast phantom and its dielectric parameters. Streszczenie. W artykule przedstawiono fizyczne podstawy hipertermii cieczy magnetycznej ze szczególnym uwzględnieniem strat mocy, jakie zachodzą podczas grzania zmiennym polem magnetycznym tkanek ludzkich połączonych z cieczą magnetyczną. I tak, zaprezentowano straty wiroprądowe, histerezowe i relaksacyjne, a następnie dokonano numerycznej analizy rozkładu gęstości mocy w zastosowaniu do parametrów dielektrycznych tkanek gruczołu piersiowego. (Zastosowanie hipertermii cieczy magnetycznej w terapii antynowotworowej).
منابع مشابه
Evaluation of the Effects of Injection Velocity and Different Gel Concentrations on Nanoparticles in Hyperthermia Therapy
Background and objective: In magnetic fluid hyperthermia therapy, controlling temperature elevation and optimizing heat generation is an immense challenge in practice. The resultant heating configuration by magnetic fluid in the tumor is closely related to the dispersion of particles, frequency and intensity of magnetic field, and biological tissue properties.Methods: In this study, to solve he...
متن کاملEffect of magnetic fluid hyperthermia with dendrimer coated iron oxide nanoparticles on breast cancer in BALB/c mice
Introduction: Magnetic fluid hyperthermia (MFH) is a promising therapeutic method in cancer therapy with using magnetic nanoparticles (NPs). In this study, we assessed the effect of MFH on mechanisms of cell death in murine breast cancer cell line (MC4-L2) and also the treatment of breast tumor in BALB/C mice using four generation dendrimer coated iron oxide nanoparticles (G4@I...
متن کاملEffect of Magnetic Fluid Hyperthermia on Implanted Melanoma in Mouse Models
Background: Nowadays, magnetic nanoparticles (MNPs) have received much attention because of their enormous potentials in many fields such as magnetic fluid hyperthermia (MFH). The goal of hyperthermia is to increase the temperature of malignant cells to destroy them without any lethal effect on normal tissues. To investigate the effectiveness of cancer therapy by magnetic fluid hyperthermia, Fe...
متن کاملStudy on Fe3O4 Magnetic Nanoparticles Size Effect on Temperature Distribution of Tumor in Hyperthermia: A Finite Element Method
In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...
متن کاملSimulation of tissue heating by magnetic fluid hyperthermia
Objective: Magnetic fluid hyperthermia is a technique in which thermal energy is generated by magnetic nanoparticles (MNPs) that are excited by an alternating magnetic field (AC field). During hyperthermia, in-vivo monitoring of elevation of temperature relies on invasive insertion of conventional thermometers, or employment of thermo-sensitive cameras that lack high precision....
متن کاملInduced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study
In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011